Impute Missing Values with the Row Minimum
impute_min-ProtData.Rd
Performs row-wise minimum imputation. For each protein (row), it replaces
missing values (NA
, NaN
) with the minimum observed value found in that
same row.
The imputation value can be scaled by a multiplicative factor alpha
.
Examples
# Create data with different minimums and NAs in each row
raw_data <- data.frame(
Gene = c("GENEA", "GENEB"),
SampleA = c(100, 500),
SampleB = c(200, 600),
SampleC = c(NA, NA)
)
pd_obj <- create_protdata(dat = raw_data)
cat("Original Data:\n")
#> Original Data:
print(pd_obj@data)
#> SampleA SampleB
#> 1 100 200
#> 2 500 600
# Impute using the row minimum (alpha = 1)
# Row 1's NA becomes 100; Row 2's NA becomes 500.
imputed_obj <- impute_min(pd_obj)
#> Error: unable to find an inherited method for function ‘impute_min’ for signature ‘object = "ProtData"’
cat("\nImputed with alpha = 1:\n")
#>
#> Imputed with alpha = 1:
print(imputed_obj@data)
#> Error: object 'imputed_obj' not found
# Impute using 90% of the row minimum
imputed_scaled <- impute_min(pd_obj, alpha = 0.9)
#> Error: unable to find an inherited method for function ‘impute_min’ for signature ‘object = "ProtData"’
cat("\nImputed with alpha = 0.9:\n")
#>
#> Imputed with alpha = 0.9:
print(imputed_scaled@data)
#> Error: object 'imputed_scaled' not found