Skip to contents

All functions

ProtData-class
ProtData Class
add_entrez()
Add Entrez Gene IDs to a Data Frame
batch_correct()
Correct for Batch Effects
compare_protein()
Generate a bar chart of protein intensity values
convert_numeric_cols()
Safely Convert Character Columns to Numeric Type
create_protdata()
Create a ProtData Object
create_protdata_from_olink()
Create a ProtData Object from Olink NPX Data
create_protdata_from_soma()
Create a ProtData Object from SomaScan Data
create_se()
This function takes a data frame of proteomics data and its corresponding sample metadata to construct a SummarizedExperiment object. It handles detection of intensity columns, validation, and synchronization of metadata.
do_limma()
Perform limma differential expression on a ProtData object
do_limma_by_condition()
Perform DEA using the condition labels of the protdata object
do_t_test(<ProtData>)
Title
do_t_test()
Title
enrich_go()
Perform Gene Ontology (GO) Over-Representation Analysis (ORA)
enrich_kegg()
Perform KEGG Over-Representation Analysis (ORA)
enrich_pathways()
Perform Comprehensive GO and KEGG Pathway Enrichment Analysis
filter_features()
Helper function to filter out sparse proteins
filter_outlier_samples()
Filter Outlier Samples Based on Protein Counts
filter_overlap()
get_overlap method for protdata class
filter_proteins_by_percent()
Filter Proteins by Percentage of Valid Values
filter_unique_proteins()
Removes duplicate analytes
get_CVs()
Calculate Coefficient of Variation (CV) for Protein Groups
get_PCs()
Calculate Principal Components Analysis (PCA)
get_pg_counts()
Get Protein Group Counts Per Sample
get_sample_correlation()
Calculate Pairwise Sample Correlations
get_umap()
Calculate UMAP Dimensionality Reduction
gse_go()
Perform Gene Ontology (GO) Gene Set Enrichment Analysis (GSEA)
gse_kegg()
Perform KEGG Gene Set Enrichment Analysis (GSEA)
has_step()
Check if a Processing Step has been Applied
impute()
Impute Missing Values with a Constant
impute_left_dist()
Impute from a Down-Shifted Normal Distribution
impute_min()
Impute Missing Values with the Row Minimum
log2_transform()
Performs a log2 transform of protein intensity values
mean_normalize()
Mean Normalization of Proteomics Data
median_normalize()
Median Normalization of Proteomics Data
num_samples()
Number of samples
plot_CVs()
Plot Coefficient of Variation (CV) Distributions
plot_PCs()
Plot Principal Component Analysis Results
plot_correlation_heatmap()
Plot a Sample Correlation Heatmap
plot_hierarchical_cluster()
Plot a Hierarchical Clustering Dendrogram of Samples
plot_pg_counts()
Plot Protein Group Counts
plot_pg_intensities()
Plot Boxplots of Sample Intensity Distributions
plot_plsda()
Generate a PLS-DA scores plot for a ProtData object
plot_proteomics_heatmap()
Plot a Proteomics Heatmap
plot_umap()
Plot UMAP Dimensionality Reduction Results
plot_volcano()
Plot a Volcano Plot for Differential Expression Results
z_score()
Z-Score Normalization for Proteins Across Samples