Package index
-
ProtData-class
- ProtData Class
-
add_entrez()
- Add Entrez Gene IDs to a Data Frame
-
batch_correct()
- Correct for Batch Effects
-
compare_protein()
- Generate a bar chart of protein intensity values
-
convert_numeric_cols()
- Safely Convert Character Columns to Numeric Type
-
create_protdata()
- Create a ProtData Object
-
create_protdata_from_olink()
- Create a ProtData Object from Olink NPX Data
-
create_protdata_from_soma()
- Create a ProtData Object from SomaScan Data
-
create_se()
- This function takes a data frame of proteomics data and its corresponding sample metadata to construct a SummarizedExperiment object. It handles detection of intensity columns, validation, and synchronization of metadata.
-
do_limma()
- Perform limma differential expression on a ProtData object
-
do_limma_by_condition()
- Perform DEA using the condition labels of the protdata object
-
do_t_test(<ProtData>)
- Title
-
do_t_test()
- Title
-
enrich_go()
- Perform Gene Ontology (GO) Over-Representation Analysis (ORA)
-
enrich_kegg()
- Perform KEGG Over-Representation Analysis (ORA)
-
enrich_pathways()
- Perform Comprehensive GO and KEGG Pathway Enrichment Analysis
-
filter_features()
- Helper function to filter out sparse proteins
-
filter_outlier_samples()
- Filter Outlier Samples Based on Protein Counts
-
filter_overlap()
- get_overlap method for protdata class
-
filter_proteins_by_percent()
- Filter Proteins by Percentage of Valid Values
-
filter_unique_proteins()
- Removes duplicate analytes
-
get_CVs()
- Calculate Coefficient of Variation (CV) for Protein Groups
-
get_PCs()
- Calculate Principal Components Analysis (PCA)
-
get_pg_counts()
- Get Protein Group Counts Per Sample
-
get_sample_correlation()
- Calculate Pairwise Sample Correlations
-
get_umap()
- Calculate UMAP Dimensionality Reduction
-
gse_go()
- Perform Gene Ontology (GO) Gene Set Enrichment Analysis (GSEA)
-
gse_kegg()
- Perform KEGG Gene Set Enrichment Analysis (GSEA)
-
has_step()
- Check if a Processing Step has been Applied
-
impute()
- Impute Missing Values with a Constant
-
impute_left_dist()
- Impute from a Down-Shifted Normal Distribution
-
impute_min()
- Impute Missing Values with the Row Minimum
-
log2_transform()
- Performs a log2 transform of protein intensity values
-
mean_normalize()
- Mean Normalization of Proteomics Data
-
median_normalize()
- Median Normalization of Proteomics Data
-
num_samples()
- Number of samples
-
plot_CVs()
- Plot Coefficient of Variation (CV) Distributions
-
plot_PCs()
- Plot Principal Component Analysis Results
-
plot_correlation_heatmap()
- Plot a Sample Correlation Heatmap
-
plot_hierarchical_cluster()
- Plot a Hierarchical Clustering Dendrogram of Samples
-
plot_pg_counts()
- Plot Protein Group Counts
-
plot_pg_intensities()
- Plot Boxplots of Sample Intensity Distributions
-
plot_plsda()
- Generate a PLS-DA scores plot for a ProtData object
-
plot_proteomics_heatmap()
- Plot a Proteomics Heatmap
-
plot_umap()
- Plot UMAP Dimensionality Reduction Results
-
plot_volcano()
- Plot a Volcano Plot for Differential Expression Results
-
z_score()
- Z-Score Normalization for Proteins Across Samples